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Propagating hydrodynamic modes in confined fluids
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In molecular dynamics simulations in the microcanonical ensemble~MEMD! we calculate the intermediate
scattering functionF(ki ,t) for a ‘‘simple’’ fluid confined to nanoscopic slit pores with chemically homoge-
neous, planar substrate surfaces. Since system properties are translationally invariant in thex-y plane, we focus
on the propagation of density modesparallel with the confining substrates by choosing a two-dimensional
wave vectorukiu5ki5(kx ,ky) for our analysis. Within the framework of classical hydrodynamics, we develop
conservation laws forz-averaged fluxes of heat and momentum. Using in-plane versions of the macroscopic
stress tensor and internal-energy current as constitutive equations we derive an expression forF(ki ,t) in the
hydrodynamic limit depending on the thermal diffusivityDT , the sound attenuation coefficientG, the in-plane
adiabatic velocity of soundv i , and the ratio of heat capacities at constant transverse stress and volumeg.
Through a fit ofF(ki ,t) in the hydrodynamic limit and its associated memory functionM (ki ,t) to MEMD
data, reliable values for the set$DT ,G,v i ,g% of material coefficients can be obtained. Variations in
$DT ,G,v i ,g% with sz may be correlated with variations in the solvation pressure2tzz2Pb with sz (tzz is the
stress exerted by the fluid along the surface normal andPb is the bulk pressure! and therefore linked to
stratification of the confined fluid.

DOI: 10.1103/PhysRevE.66.041205 PACS number~s!: 62.10.1s, 61.46.1w, 62.25.1g, 68.55.2a
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I. INTRODUCTION

In a fluid ~i.e., gas or liquid! equilibrium properties can be
linked to the typical range of intermolecular correlations.
such a fluid is confined to spaces of nanoscopic dimensio~s!
by solid substrates, say, confinement~i.e., the separationsz
of the solid surfaces! adds a new relevant length scale and,
a consequence, fluid properties are altered markedly f
those of a corresponding bulk fluid at the same temperatuT
and chemical potentialm. For example, in such a fluid
confinement-induced phase transitions may arise, which
not have a bulk counterpart@1#. Moreover, diffusion in con-
fined monolayer films may be anomalous in that the tim
dependence of the mean-square displacement in a dire
parallel with the confining~planar! substrates may be fracta
@2#. These and other unique features of confined fluids m
them fascinating both from an experimental and from a t
oretical perspective. However, to date, most of the work
voted to confined fluids is still concerned with equilibriu
properties@3#.

Comparatively few studies are therefore devoted to tim
dependent phenomena in confined fluids@4# and most of
these focus on diffusion@2,5,6#, with particular emphasis on
zeolites@7–9#. This interest is largely stimulated by impo
tant technical applications of these materials, such as
lecular sieves@10# and catalysis@11#. Diffusion is also the
rate-determining factor in the separation of binary gas m
tures in porous media@12–14#.

Besides diffusion, viscous flow through microporous m
dia has been the other focal point in recent years@15–19#.
For example, Bitsaniset al. @15# developed the so-called lo
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cal average density model~LADM ! to describe fluid flow in
directions parallel to the substrates. The LADM takes in
account the inhomogeneity of the confined fluid along
substrate normal by introducing a viscosity that depends
the local average density at positionz between the substrates
The local average density is obtained by averaging the lo
density over a spherical volume centered atz, with a diam-
eter equal to the ‘‘diameter’’s of a ~‘‘simple’’ ! fluid mol-
ecule. Traviset al. @16#, and later on Travis and Gubbin
@17#, simulated Poiseuille flow in nanoscopic slits and o
served velocity profiles in the direction normal to the su
strate surfaces that cannot be accounted for by the cons
tive equations of classical hydrodynamics. Based upon t
observations Travis and Gubbins propose a modified con
tutive equation for momentum flux by assuming that t
shear viscosity depends on the positionz relative to the sub-
strates in the sense of a convolution integral involving a
the local strain rate@see Eq.~5! in Ref. @17##.

To develop a better understanding of the viscous beha
of confined fluids is of interest in a number of contexts. Ta
as an example experiments employing the surface force
paratus~SFA!, which permits one to measure the shear str
in response to an externally applied strain. A reproduci
but still puzzling observation is that below a film thickne
of about six molecular layers, a dramatic increase of
shear viscosity is reported, regardless of the molecular st
ture of the confined phase@20,21# that would normally signal
solidification. However, the mismatch between the crysta
graphic structure of the confining~mica! substrates and solid
structures that the confined phase would possibly form in
bulk renders solidification to be a rather unlikely cause of
experimentally observed increase in shear viscosity.

From a broader perspective, the viscous nature of a fl
is generally responsible for the damping of density mod
which can in principle be measured through the dynam
©2002 The American Physical Society05-1
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structure factorS(k,v) by the scattering of light@22,23# or
thermal neutrons@24#. On account of their difference in
wavelength by about three orders of magnitude, light sca
ing provides information about slow (v→0), long-
wavelength (uku→0) modes ~i.e., hydrodynamic modes!
whereas thermal neutrons permit insight into the dynamic
a fluid at the molecular scale due to their much shorter wa
lengths corresponding roughly tos as far as ‘‘simple’’ fluids
are concerned.

Theoretically,S(k,v) can be determined in molecular dy
namics ~MD! computer simulations. However, in MD
S(k,v) is not directly accessible because the simulations
performed in the time~t! and not in the frequency (v) do-
main. Hence, the intermediate scattering functionF(k,t),
which is related toS(k,v) through a Laplace transformation
is the more suitable quantity. At the microscopic lev
F(k,t) represents the time-dependent autocorrelation fu
tion of the Fourier components of the local density. Expe
mentally,F(k,t) can be determineddirectly in neutron spin
echo measurements@25,26#.

In the hydrodynamic limit (uku[k→0, v→0), F(k,t)
for bulk fluids can be expressed in terms of a set of mate
constants, such as the thermal diffusivityDT and the kine-
matic viscosityb. However, if the hydrodynamicF(k,t) is
fitted to MD data over ak range typically accessible in MD
without having to take recourse to anything but stand
simulation techniques, these materials constants turn ou
depend onk, thereby pointing to the fact that the hydrod
namic form ofF(k,t) is inadequate@27#. Since we are inter-
ested in properties likeDT and b for confined fluids, we
develop here an approach based upon the memory func
M (ki ,t) associated withF(ki ,t) where we focus exclusively
on the density modes propagating in thex-y plane~i.e., par-
allel with the confining substrates! by choosing ki
5(kx ,ky). In developing the relevant hydrodynamic expre
sions we take advantage of the fact that across eachx-y
plane~located at differentz), properties of the confined fluid
are translationally invariant in our model.

The remainder of the paper is organized as follows. S
tion II A is devoted to a derivation of hydrodynamic conse
vation laws for slit pores. In Sec. II B, we are concerned w
deriving a hydrodynamic equation for the evolution of de
sity modes in slit pores. Starting from a microscopic defi
tion of F(ki ,t) in Sec. III A, we derive its hydrodynamic
counterpart in Sec. III B. Section III C is devoted to an i
troduction of the memory-function formalism used below
Sec. IV. Applications to bulk and confined fluids are th
discussed in Secs. IV B and IV C, respectively. We fina
summarize our findings in Sec. V.

II. HYDRODYNAMIC MODES IN CONFINED FLUIDS

A. Conservation laws for slit pores

Consider a time-dependent vector field

a~r,t !5(
i 51

N

ai~ t !d@r2r i~ t !#, ~2.1!

whererPR3, r i(t) is the position of fluid moleculei at time
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t, andd@r2r i(t)# is the Diracd function. In Eq.~2.1!, ai(t)
is a physical property of molecule,i and thereforea(r,t) is
the local dynamical variable associated with it. For examp
if ai(t) were the momentumpi(t) of molecule i, a(r,t)
[p(r,t) would be the associated time-dependent local m
mentum density.

Following standard reasoning@28# it can be shown that
a(r,t) satisfies the continuity equation

] ta~r,t !1“•Ja~r,t !50 ~2.2!

in the absence of sources and sinks, that is,a(r,t) is assumed
to be conserved. In Eq.~2.2!, ] t[]/]t, and~Cartesian! com-
ponents of the flux tensorJa(r,t) are given by

Jab
a ~r,t !5aa~r,t !vb~r,t !, a,b5x,y,z, ~2.3!

wherevb(r,t) is the b component of the velocity field atr
and t.

We now wish to apply these considerations to a slit p
with chemically homogeneous substrate surfaces locate
z56sz/2. If sz is of the order of the typical range of inter
actions between the fluid molecules, the pore fluid will
highly inhomogeneous, that is, molecules arrange their c
ters of mass such that the fluid consists of individual str
parallel with the confining substrate surfaces. This is
flected by the fluid’s local density that is a damped oscil
tory function of z @29#. Since we shall be concerned lat
only with a hydrodynamic analysis ofin-planefluxes, that is,
fluxesparallel with the substrate planes, it is sensible to tu
to ‘‘reduced’’ conservation laws. The latter are obtained
multiplying both sides of Eq.~2.2! by sz

21dz and integrating
the resulting expression overz which gives

] tāa~R,t !52]xJ̄xa
a ~R,t !2]yJ̄ya

a ~R,t !2Jza
a ~R,sz/2,t !

1Jza
a ~R,2sz/2,t !, a5x,y,z, ~2.4!

whereRPR2 is a point in thex-y plane and

āa~R,t ![
1

sz
E

2sz/2

sz/2

dz aa~R,z,t !, ~2.5a!

J̄ab~R,t ![
1

sz
E

2sz/2

sz/2

dzJab~R,z,t !. ~2.5b!

In Eq. ~2.4!

Jab
a ~R,6sz/2,t !5aa~R,6sz/2,t !vb~R,6sz/2,t !, ~2.6!

where

~2.7!

expresses the fact that fluid molecules cannot reach the
strate surfaces located atz56sz/2 on account of diverging
5-2



e

he

e

o-

th
.
em

e

s

s,
e

te

is
sion

ty

to
ical
the

y a
t
he

-

ed

f

and

PROPAGATING HYDRODYNAMIC MODES IN CONFINED FLUIDS PHYSICAL REVIEW E66, 041205 ~2002!
fluid-substrate repulsion. From Eqs.~2.4! and~2.7!, it is then
clear that the last two terms on the right side of Eq.~2.4!
vanish identically. It is now convenient to introduce th
‘‘transverse’’ tensor@Ji

a(R,t)#ab[ J̄ab
a (R,t) (a,b5x,y) and

the ‘‘normal’’ vector@J'
a (R,t)#a[ J̄az

a (R,t) (a5x,y) and re-
cast Eq.~2.4! compactly as

] tai~R,t !1“ i•Ji
a~R,t !50, ~2.8a!

] taz~R,t !1“ i•J'
a ~R,t !50, ~2.8b!

whereai[(ax ,ay), “ i[(]x ,]y) (]a[]/]a). In Eqs.~2.8!,
it should be understood that henceforth all~vector or scalar!
fields depending only onR and t have been averaged overz
in the above sense. We have therefore already dropped
overbar onāi and āz in Eqs.~2.8! to simplify the notation.

If, at the outset, we were concerned with a scalar rat
than a vector field replacing in Eq.~2.1!, a(r,t) andai(t) by
their scalar analogsa(r,t) and ai(t), similar considerations
apply and the resultingz-averaged conservation law can b
cast as

] ta~R,t !1“ i•Ji
a~R,t !50, ~2.9!

where the (z-averaged! vector Ji
a[(Jx

a ,Jy
a) has only two

components.
Moreover, sincesz is comparable to the range of interm

lecular interactions, an analysis of propagating modes
terms of hydrodynamic equations makes only sense in
x-y plane. Thus, Eq.~2.8b! will not be employed henceforth
To reduce the notational burden even further, it then se
sensible to drop the subscript on the operator“ i as well as
on the fluxesJi

a(R,t) andJi
a(R,t) from now on.

B. Density correlations

At this stage we introduce the constitutive equations

@Jp~R,t !#ab52t i~R,t !dab2h@]bva~R,t !1]avb~R,t !#

1dabS 2

3
h2z D“•v~R,t !, a,b5x,y,

~2.10a!

Ju~R,t !5hv~R,t !2l“T~R,t !, ~2.10b!

for (z-averaged! in-plane momentum@see Eq.~2.10a!# and
energy flux@see Eq.~2.10b!#. In Eqs.~2.10!, t i(R,t) is the
lateral local stress,v(R,t) is the velocity field,h andz are,
respectively, shear and bulk viscosities anddab is the Kro-
necker symbol. In Eq.~2.10b!, h5u2t i and u are, respec-
tively, enthalpy and internal-energy density of a confin
fluid in thermodynamic equilibrium,l is the thermal con-
ductivity, andT(R,t) is the (z-averaged! local temperature.
That is, we explicitlyassumethe same constitutive equation
for the z-averaged lateral fluxes~i.e., fluxes parallel to the
substrate surfaces! normally employed for homogeneou
isotropic bulk fluids@28,30#. This seems justified because th
confined fluid is assumed macroscopic~i.e., of infinite ex-
04120
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tent! in the x andy directions. Moreover, since the substra
is chemically homogeneous and planar~see Sec. IV A!, fluid
properties are translationally invariant across thex-y planes.
Consequently, if averaged overz, we are essentially dealing
with a laterallyhomogeneousand isotropic fluid. Hence, the
inadequacy of hydrodynamics to describe~Poiseuille! flow in
narrow slits observed by Traviset al. @16# and later on by
Travis and Gubbins@17# need not be of concern here. This
because this inadequacy was observed only if an expres
similar to Eq.~2.10a! was employed to analyze the veloci
profile along the surfacenormal where, in fact, the confined
fluid is highly inhomogeneous. However, it is interesting
note that as a cure of the apparent deficiency of class
hydrodynamics, Travis and Gubbins propose to replace
constant shear viscosity in their constitutive equation b
local one, averaged overz @17#. This concept, which has no
been fully tested to date, seems similar in spirit to t
z-averaged conservation laws introduced in Sec. II A.

Inserting the constitutive equation~2.10a! into the conser-
vation law for the momentum densityp(R,t) @see Eq.~2.8a!
for a[p] and using

p~R,t !5mrv~R,t !5mJr~R,t !, ~2.11!

where m is the mass of a fluid molecule,Jr(R,t) is the
number-density flux, andr5N/Asz is the mean number den
sity at equilibrium, permits us to write

] tJ
r~R,t !2

1

m
“t i~R,t !2

h

rm
¹2Jr~R,t !

2

1
3 h1z

rm
“@“•Jr~R,t !#50, ~2.12!

which is thez-averaged, in-plane analog of the lineariz
three-dimensional Navier-Stokes equation@30#. Similarly,
starting from the conservation law for the local~internal-!
energy densityu(R,t) @a[u, see Eq.~2.9!# and using the
constitutive equation~2.10b! we have

] tFu~R,t !2
u2t i

r
r~R,t !G2l¹2T~R,t !

5] tq~R,t !2l¹2T~R,t !50, ~2.13!

whereq(R,t) is the local heat density following the line o
arguments presented in Ref.@31#. To arrive at Eq.~2.13!, we
used Eqs.~2.11! and ~2.9! for a[r.

Perceiving nowt i(R,t) andq(R,t) as functions of aver-
age density and temperature of the confined fluid, we exp
both quantities in terms of deviationsdr(R,t)5r(R,t)2r
and dT(R,t)5T(R,t)2T of r(R,t) and T(R,t) from their
equilibrium valuesr andT to first order and get

dt i~R,t !5S ]t i

]r D
N,T,sz

dr~R,t !1S ]t i

]T D
N,A,sz

dT~R,t !,

~2.14a!
5-3
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dq~R,t !5
T

r S ]t i

]T D
N,A,sz

dr~R,t !1rcAsz
dT~R,t !.

~2.14b!

Here we notice that at fixedN and sz , Aszdq(A,T)
5TdS(A,T) (S is the entropy! through the second law o
thermodynamics, define the isochoric heat capacity per m
eculecAsz

[TN21(]S/]T)N,A,sz
, and utilize the Maxwell re-

lation @32#

2S ]S
]AD

N,T,sz

5szS ]t i

]T D
N,A,sz

. ~2.15!

To proceed, we notice that in Eq.~2.12!, t i(R,t) can be
replaced by dt i(R,t)5t i(R,t)2t i , since “t i vanishes
identically. Employing then Eq.~2.14a! we may replace
“dt i(R,t) in Eq. ~2.12! to obtain

] tJ
r~R,t !2

1

m S ]t i

]r D
N,T,sz

“dr~R,t !

2
1

m S ]t i

]T D
N,A,sz

“dT~R,t !2
h

rm
¹2Jr~R,t !

2

1
3 h1z

rm
“@“•Jr~R,t !#50. ~2.16!

By similar arguments we may substitute in Eq.~2.13!,
dq(R,t) and dT(R,t) for q(R,t) and T(R,t), respectively.
Dividing both sides of the resulting expression byrcAsz

we
get
-

en
ha

ic

er
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S ] t2
l

rcAsz

¹2D dT~R,t !1
T

r2cAsz

S ]t i

]T D
N,A,sz

] tdr~R,t !50.

~2.17!

Moreover, we have from Eq.~2.9!

] tr~R,t !1“•Jr~R,t !5] tdr~R,t !1“•Jr~R,t !50,

~2.18!

so that Eq.~2.17! can be written in final form as

S ] t2
l

rcAsz

¹2D dT~R,t !2
T

r2cAsz

S ]t i

]T D
N,A,sz

“•Jr~R,t !50.

~2.19!

To solve the resulting coupled partial differential equ
tions in Eqs. ~2.16! and ~2.19!, we introduce the two-
dimensional Fourier-Laplace transformation through R
@31# @ki[(kx ,ky)#,

a~ki ,s!5E
0

`

dt exp~2st!E dRda~R,t !exp~2 iki•R!.

~2.20!

Applying it to Eqs.~2.16!, ~2.18!, and~2.19!, we obtain a set
of coupled linear equations for the unknown quantit
r(ki ,s), T(ki ,s), andJr(ki ,s) expressed conveniently as
~2.21!
n

the
whereki5ukiu and Jr5uJru because of the translational in
variance of system properties in thex-y plane. In the hydro-
dynamic matrix H(ki ,s), a[l/rcAsz

, and b[( 4
3 h

1z)/rm is the lateral kinematic viscosity. In Eq.~2.21!, we
have again simplified the notation by dropping the argum
t50 of the vector elements on the right side. We note t
H(ki ,s) is formally equivalent to that part ofHb(k,s) for
bulk fluids describing the propagation of hydrodynam
modes in the directionparallel with k5(kx ,ky ,kz). How-
ever, on account of averaging the conservation laws ovz
t
t

@see Eqs.~2.8a! and ~2.9!#, H(ki ,s) is a 333 rather than a
535 matrix such asHb(k,s), where one is also dealing with
modes propagating in a directionperpendicularto k @see, for
example, Eq.~8.3.28! in Ref. @31##.

However, the modes parallel and perpendicular tok are
uncoupled. Therefore, the analysis of Eq.~2.21! is identical
to that of the submatrix ofHb(k,s) for modes parallel tok.
For example, Eq.~2.21! reveals that the desired solutio
r(ki ,s) depends in general onr(ki), T(ki), and Jr(ki).
However, as pointed out by Hansen and McDonald for
5-4
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bulk counterpart of Eq.~2.21!, r(ki ,s) cannot depend on
T(ki) since the latter andr(ki) are uncorrelated@31#. More-
over, one may chooseki so that initially~i.e., for t50), ki is
perpendicular to the mass flux. Thus, when solving E
~2.21! for r(ki,s), Jr(ki) may be set to zero without the los
of generality. Therefore, one has

r~ki ,s!5
H11~ki ,s!

detH~ki ,s!
r~ki!, ~2.22!

where

detH~ki ,s!5s~s1aki
2!~s1bki

2!1sv i
2ki

21
a

g
v i

2ki
4 ,

~2.23!

and the algebraic complement is given by

H11~ki ,s!5~s1aki
2!~s1bki

2!1
g21

g
v i

2ki
2 . ~2.24!

To arrive at Eqs.~2.23! and ~2.24!, the definitions

S ]t i

]r D
N,T,sz

52
mv i

2

g
, ~2.25a!

S ]t i

]T D
N,A,sz

5
v i

2mr2

Tg
~ct i

2cAsz
! ~2.25b!

have also been employed. In Eqs.~2.25!, v i is the adiabatic,
in-plane velocity of sound defined analogously to its bu
counterpart@30#, and g[ct i

/cAsz
, wherect i

and cAsz
are,

respectively, the heat capacities~per particle! at constant
transverse stress and volume@32#.

III. THE INTERMEDIATE SCATTERING FUNCTION

A. Microscopic definition

At a microscopic level, the temporal evolution of the loc
density is related to the so-called van Hove function defin
as @31,33#

G~r,r8,t !5
1

N K (
l 51

N

(
m51

N

d@r81r2rm~ t !#d~r82r l !L ,

~3.1!

whose physical significance is that of the probability~den-
sity! of finding moleculem at a pointr81r and timet, given
that moleculel was located at pointr8 at t50. Note that
G(r,r8,t) accounts for self-correlations (m5 l ) and cross
correlations (mÞ l ) ~usually referred to as ‘‘distinct’’!. In Eq.
~3.1! and below, we omit the argumentt50 of r l and related
quantities to ease the notational burden. The angular brac
in Eq. ~3.1! denote an ensemble average. Considering
symmetry of our system we rewrite Eq.~3.1! as
04120
s.

l
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e

G~R,R8,z,z8,t !5
1

N K (
l 51

N

(
m51

N

d@R81R2Rm~ t !#

3d~R82Rl !d@z81z2zm~ t !#

3d~z82zl !L . ~3.2!

At equilibrium, system properties are translationally inva
ant in the x and y directions, so that we may integrat
G(R,R8,z,z8,t) over the originR8 to get

G~R,z,z8,t !5
1

N K (
l 51

N

(
m51

N

d@R1Rl2Rm~ t !#

3d@z92zm~ t !#d~z82zl !L , ~3.3!

where z9[z1z8 has also been introduced. For the sub
quent analysis in Sec. III B, it is convenient todefinea ‘‘re-
duced’’ van Hove function that we obtain by integratin
G(R,z,z8,t) in Eq. ~3.3! over z8 and z9. Two-dimensional
Fourier transformation of the resultingG(R,t) then gives the
intermediate scattering function of a classical system

F̃~ki ,t !5
1

N K (
l 51

N

(
m51

N E exp~2iki•R!

3d@R1Rl2Rm~ t !#dRL , ~3.4!

whereki[(kx ,ky) is a two-dimensional vector in reciproca
space as before@see Eq.~2.20!#. Thus,F̃(ki ,t) accounts for
lateral correlations between molecules regardless of t
separation along thez axis. By making use of an elementar
property of thed function, the last expression may be co
verted into

F̃~ki ,t !5
1

N K (
l 51

N

(
m51

N E E exp~2 iki•R!

3d@R1Rl2R8#d@R82Rm~ t !#dRdR8L .

~3.5!

TransformingR→R95R2R8 in Eq. ~3.5!, we arrive at

F̃~ki ,t !5
1

N K (
l 51

N E exp~2 iki•R9!d@R91Rl #dR9

3 (
m51

N E exp~ iki•R8!d@R82Rm~ t !#dR8L
5

1

N
^r~2ki!r~ki ,t !&, ~3.6!

where
5-5
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r~ki ,t !5 (
m51

N E exp~2 iki•R8!d@R82Rm~ t !#dR8

5 (
m51

N

exp@2 iki•Rm~ t !#. ~3.7!

In Eq. ~3.6!, we again exploit the fact that system propert
are translationally invariant in thex-y plane and therefore
F̃(ki ,t) must depend only on themagnitudeand not on the
direction of ki . For t50, ^r(2ki)r(ki)&5NS(ki), where
S(ki) is the static structure factor. Thus, we introduce
normalizedintermediate scattering function

F~ki ,t !5
F̃~ki ,t !

S~ki!
5

^r~2ki!r~ki ,t !&

^r~2ki!r~ki!&
, ~3.8!

whose Laplace transform is given by

F~ki ,s!5
^r~2ki!r~ki ,s!&

^r~2ki!r~ki!&
. ~3.9!

B. The hydrodynamic limit

Inserting now Eq.~2.22!, into Eq. ~3.9! we obtain

F~ki ,s!5
~s1aki

2!~s1bki
2!1~g21!v i

2ki
2/g

s~s1aki
2!~s1bki

2!1sv i
2ki

21~a/g!v i
2ki

4
.

~3.10!

To transformF to the time domain, we follow the procedur
described by Mountain@34# and later by McIntyre and Sen
gers@35# and split the far right side of Eq.~3.10! into partial
fractions. This requires knowledge of the roots of the d
nominator. The roots may be approximated as follows. Fi
we transform variables in the denominator according tos
→z5s/v iki and introducex5aki

2/v iki and y5bki
2/v iki .

Assuming bothx and y to be sufficiently small@35#, we
expand the solution of the transformed cubic polynomial

z31z2~x1y!1z~11xy!1
x

g
50 ~3.11!

into a power seriesz5a01a1x1a2y1••• cut off after the
linear terms. Inserting this into Eq.~3.11! permits one to
determine the unknown coefficientsa0 , a1, and a2 by re-
quiring terms of equal power inx andy to vanish separately
Thus, after transforming back to the original variables, ze
of the denominator are approximately given by@34,35,28#

s052DTki
21O~ki

3!, ~3.12a!

s15 iv iki2Gki
21O~ki

3!, ~3.12b!

s252 iv iki2Gki
21O~ki

3!, ~3.12c!

where DT[a/g is the thermal diffusivity andG5 1
2 @DT(g

21)1b# is the sound attenuation coefficient. Equatio
04120
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~3.12! agree formally with the results presented by McInty
and Sengers@35# for the bulk. With Eqs.~3.12! we obtain
from Eq. ~3.10!

F~ki ,s!5
g21

g

1

s1DTki
2

1
1

2g H 1

s2 iv iki1Gki
2 @12 id~ki!#

1
1

s1 iv iki1Gki
2 @11 id~ki!#J , ~3.13!

where d(ki)5@Gki
21(g21)DTki

2#/v iki @27#. Equation
~3.13! may then be transformed back into the time dom
yielding

F~ki ,t !5
g21

g
exp~2DTki

2t !1
1

g
exp~2Gki

2t !

3@cos~v ikit !1d~ki!sin~v ikit !#. ~3.14!

Equation~3.14! for the in-plane intermediate scattering fun
tion in the hydrodynamic limit is formally equivalent to it
bulk counterpart first presented by Berne@36# and later on by
Schoenet al. @27#. It differs, however, from the correspond
ing expression of McIntyre and Sengers@35# in the addi-
tional sin term~see also discussion in Ref.@27#!.

C. Memory function

In principle, Eq.~3.14! may be employed to interpret re
sults obtained in MD simulations@27#. However, one has to
be aware of several crucial approximations made during
derivation. First, Eq.~3.14! applies only to situations wher
v i is sufficiently large. It is therefore not applicable as o
approaches a spinodal or a critical point, since therek i5
2r21(]r/]t i)N,T,sz

}v i
21→` ~i.e., v i→0) @see Eq.

~2.25a!#. However, we have explicitly assumed in Sec. III
thatx,y}v i

21!1 @see Eqs.~3.11! and~3.12!#. Moreover, the
form of the expression in Eq.~3.14! is only correct to order
O(ki

2). Hence, if ki is not small enough, one expects E
~3.14! to hold only if all material constants~i.e., the set
$DT ,G,g,v i%) becomeki dependent. An extrapolation to th
infinite-system limitki→0 may then become prohibitively
difficult and is not free of arbitrariness~see, for example,
Fig. 12 of Ref.@27#!.

A determination ofDT , G, g, andv i not plagued by this
deficiency is, however, possible by considering the mem
function M (ki ,t) associated withF(ki ,t). SinceF(ki ,t) is
a time-dependent autocorrelation function@see Eq.~3.6!#, it
satisfies the Volterra integrodifferential equation

2
dF~ki ,t !

dt
5E

0

t

dt8 M ~ki ,t !F~ki ,t2t8!, ; ki

~3.15!

which, after Laplace transformation, may be solved for
memory kernel
5-6
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M ~ki ,s!5
1

F~ki ,s!
2s

5
sv i

2ki
2/g1~a/g!v i

2ki
4

~s1aki
2!~s1bki

2!1~g21!v i
2ki

2/g
,

~3.16!

where we also used Eq.~3.10!. Equation~3.16! can be trans-
formed back to the time domain utilizing the zeros,

s652S Gki
21

DT

2
ki

2D
6 iAv i

2ki
2

g
~g21!2

1

4
@DTki

2~2g21!22Gki
2#2

52x86 ix9, ~3.17!

of the polynomial in the denominator. We may then rewr
Eq. ~3.16! as

M ~ki ,s!5
sv i

2ki
2/g

~s1x81 ix9!~s1x82 ix9!

1
DTv i

2ki
4

~s1x81 ix9!~s1x82 ix9!

5
v i

2ki
2

g
@M 8~ki ,s!1DTgki

2M 9~ki ,s!#

5M0~ki!@M 8~ki ,s!1DTgki
2M 9~ki ,s!#.

~3.18!

From M 8(ki ,s) andM 9(ki ,s), we obtain

M 8~ki ,t !5
1

2ix9
$~x81 ix9!exp@2~x81 ix9!t#

2~x82 ix9!exp@2~x82 ix9!t#%, ~3.19a!

M 9~ki ,t !52
1

2ix9
$exp@2~x81 ix9!t#

2exp@2~x82 ix9!t#%, ~3.19b!

so that from Eqs.~3.18! and ~3.19! one has

M ~ki ,t !5M0~ki!exp~2x8t !@cosh~ ix9t !2 iy9sinh~ ix9t !#

~3.20!

for the memory function in the hydrodynamic regime, whe

y9[AM0~g21!

x92
21. ~3.21!

In the context of this work we shall assume that the inequ
ity
04120
l-

M0~ki!.
~DTki

2g2x8!2

g21
~3.22!

is satisfied so thatx9PR @see Eqs.~3.17!, ~3.18!#. We may
then rewrite Eq.~3.20! as

M ~ki ,t !5M0~ki!exp~2x8t !@cos~x9t !1y9sin~x9t !#,

~3.23!

since for x9PR, cosh(ix9t)5cos(x9t) and sinh(ix9t)
5isin(x9t).

IV. RESULTS

A. Technical details

We consider a fluid composed ofN spherically symmetric
molecules without internal degrees of freedom~i.e.,
‘‘simple’’ molecules! squeezed between plane parallel so
substrates separated bysz . Solid atoms forming the sub
strates interact with the fluid moleculesvia the pairwise ad-
ditive potential

w [k]~z!52perss
2F2

5 S s

z6sz/2
D 10

2S s

z6sz/2
D 4G ,

~4.1!

where1↔k51 and2↔k52 refer to lower and upper sub
strates, respectively. In Eq.~4.1!, the areal density of the
solid substrate is set torss

251.
The fluid-fluid interaction is described by a so-calle

shifted-force potential defined by

us f~r !5H uLJ~r !2uLJ~r c!1uLJ8 ~r c!~r c2r !, r<r c

0, r .r c ,
~4.2!

whereuLJ(r ) is given by

uLJ54eF S s

r D 12

2S s

r D 6G , ~4.3!

and uLJ8 (r c)5duLJ(r )/drur 5r c
. In the actual simulationsr c

52.5s, so that we are dealing with short-range interactio
only. Since the shifted-force potential and its first derivati
go to zero continuously atr 5r c , corrections due to the finite
cutoff radiusr c are not required for any of the quantities
interest.

To follow the time evolution of our system, we solv
Newton’s equation numerically using the so-called veloc
Verlet algorithm@37#. To integrate the equation of motion b
this finite-difference scheme a time step ofdt54.6331023

in the customary dimensionless~i.e., ‘‘reduced’’! units ~see
Table I! is used. Energy is then conserved to about
31024 for a typical run of 105 time steps. Reduced units ar
also used for all other quantities of interest, which we su
marize for convenience in Table I.

Throughout this work we considerT51.0 and a bulk den-
sity rb50.7 corresponding to a liquid off any phase coexi
ence. For this state we determine the chemical poten
5-7
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m529.11 in a canonical ensemble Monte Carlo~CEMC!
simulation by means of Widom’s test-particle method@37#.
In subsequent Monte Carlo simulations in the grand can
cal ensemble~GCEMC! we thenfix m529.11 and deter-
mine theaveragefluid densityr(sz)5^N&/Asz for a range
of substrate separations 1.8<sz<5.0. For each value ofsz
we taker(sz) as input in microcanonical ensemble molec
lar dynamics~MEMD! simulations. Thus, in MEMD the
thermodynamic state of the confined fluid corresponds tT
'1.0 andm'29.11 ~due to slight deviationsDT.61.25
31022 of the mean temperature of the fluid in a give
MEMD run from its desired valueT51.0) assuming equiva
lence of statistical-physical ensembles@38#.

For each value ofsz and ki , ten MEMD runs were per-
formed. Results presented below were averaged over t
runs. Since properties of the confined fluid are translation
invariant in thex andy directions, we chose four equivalen
vectors ki5(kx,0), (2kx,0), (0,ky), and (0,2ky) corre-
sponding to the same magnitudeki and averageF(ki ,t) over
these vectors to further enhance the statistical accurac
our data. The typical range ofki covered in this study is
0.075,ki,0.300. Note that due to periodic boundary co
ditions applied atx56sx/2, y56sy/2, kxsx andkysy must
be integer multiples of 2p. Throughout this work,sx5sy .

The first of the ten MEMD runs is started from a rando
configuration of fluid molecules. This configuration is equi
brated in a CEMC simulation using 33104 cycles~i.e., dis-
placement attempts per fluid molecule! @6#. At the end of this
equilibration period, velocities are assigned to the fluid m
ecules. They are taken at random from a Maxwe
Boltzmann distribution forT51.0. This configuration is then
equilibrated further in another 104 MEMD steps before we
begin accumulating data. Runs 2–10 are started from
final configuration of the immediately preceding one.

B. Bulk fluid

We now turn to a discussion ofF(ki ,t) for the bulk fluid.
Two representative curves forki50.22 and 0.38 are plotte
in Fig. 1~a!. In both cases,F(ki ,t) calculated in MEMD
from Eqs.~3.7! and~3.8! is a damped, oscillatory function o

TABLE I. Dimensionless~i.e., ‘‘reduced’’! units for various
physical quantities; reduced units may be converted to SI units
ing m54.031022 kg mol21, s53.4310210 m, e/kB5120 K, and
kB51.3806310223 J K21.

Quantity In units of

Length s
Wave vector s21

Volume s3

Energy e
Temperature e/kBT
Time Ams2/e
Velocity Ae/m
Sound attenuation coefficient As2e/m
Thermal diffusivity As2e/m
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time. The larger the period of oscillations, the smaller theki .
Damping, on the other hand, becomes weaker with decr
ing ki . Also shown in Fig. 1~a! is a fit of Eq. ~3.14! to the
MEMD data taking the set$DT ,G,g,v i% as fit parameters
The plots show that Eq.~3.14! is capable of representing th
MEMD-generated data quite nicely over the whole tim
range plotted and regardless ofki . However, Fig. 1~a! re-
veals that over the accessible time range,F(ki ,t) does not
decay to zero. This effect is more pronounced with decre
ing ki , and reflects the increasingly collective nature
propagating density modes aski→0.

It is also instructive to compareF(ki ,t) with the associ-
ated memory functionM (ki ,t) plotted in Fig. 1~b!. The lat-
ter is obtained by solving Eq.~3.15!. As pointed out by
Berne and Harp@39#, rather than solving Eq.~3.15! directly,
it is numerically advantageous to first differentiate Eq.~3.15!
with respect tot and then solve the resulting expression,

M ~ki ,t !52F̈~ki ,t !2E
0

t

dt8M ~ki ,t8!Ḟ~ki ,t2t8!, ; ki ,

~4.4!

in an iterative fashion which requires first and second deri
tives of F(ki ,t). These are calculated analytically from E

s-

FIG. 1. ~a! Intermediate scattering functionF(ki ,t) as a func-
tion of time t for bulk fluid; (h) ki50.22, (s) ki50.38 and solid
line is a fit of Eq.~3.14! to MEMD data.~b! is similar to~a!, but for
M (ki ,t); solid line is fit of Eq. ~3.23! (y950) to discrete data
points.
5-8
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PROPAGATING HYDRODYNAMIC MODES IN CONFINED FLUIDS PHYSICAL REVIEW E66, 041205 ~2002!
~3.14! usingDT , G, g, andv i from the previous fit. Berne
and Harp also propose an algorithm by which the
calculatedM (ki ,t) may be employed to recomputeF(ki ,t)
without taking further recourse to an analytic function. The
latter data are essentially indistinguishable from the origi
MEMD-generatedF(ki ,t).

From the plots in Fig. 1~b!, we see thatM (ki ,t) oscillates
around thet axis in a damped fashion but vanishes mo
quickly than the correspondingF(ki ,t) plotted in Fig. 1~a!
as one would have expected intuitively from Eq.~3.15!. Like
F(ki ,t), the largerki is, the fasterM (ki,t) goes to zero.
However, unlike F(ki,0), M (ki,0)Þ1, where this initial
value reflects the short-time decorrelation of density mod
Therefore, in agreement with Fig. 1~a!, M (ki,0) increases
with ki . Moreover, it is noteworthy that the hydrodynam
expression given in Eq.~3.23! provides a remarkably goo
representation ofM (ki ,t) if we take the set$x8,x9,M0% as
independent fit parameters.

The validity of Eq.~3.23! may be tested further by notin
from Eqs.~3.17! and~3.18! that in the hydrodynamic regim
(ki→0) the scaling laws

x8~ki!}ki
2 , ~4.5a!

M0~ki!}ki
2 , ~4.5b!

must hold becauseDT , G, g, andv i are independent ofki .
For x9, we have from Eq.~3.17! a slightly more complicated
form,

x92~ki!}ki
21O~ki

4!. ~4.6!

However, we notice from the plots in Fig. 2 that all thr
quantities can be well represented by straight lines thro
the origin for ki&0.275. Therefore, we conclude that ov
this range the contribution of orderki

4 to x92 must be negli-
gible, that is, Eq.~4.6! may be recast as@see also Eq.~3.17!#

x92.~g21!M0~ki!}ki
2 . ~4.7!

FIG. 2. Scaling laws forM0(ki) (m), x8(ki) (h), andx92(ki)
(d) as functions ofki

2 obtained by fitting Eq.~3.23! (y950) to
memory function. Straight lines are linear least-squares fits to
points based upon scaling laws@see Eqs.~4.5!, ~4.7!#.
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From Eq. ~3.21!, this implies y9.0, so that only the cos
term in Eq. ~3.23! survives. Letm1 and m2 be slopes of
linear least-squares fits to the curvesx92(ki) and M0(ki),
respectively, where from Eqs.~3.17! and ~3.18! one has

m15
v i

2~g21!

g
, ~4.8a!

m25
v i

2

g
. ~4.8b!

Combining this last expression with Eq.~4.7!, we get

g511
m1

m2
, ~4.9!

and therefore from Eq.~4.8b!

v i5Am11m2. ~4.10!

Unfortunately, a separate determination ofG and DT in
the spirit of Eqs.~4.9! and ~4.10! is precluded since only
x8 depends on both quantities@see Eq.~3.17!#. Thus, a fit
of Eq. ~3.23! in which exp(2x8t) is replaced by
exp(2Gki

2t)exp(2DTki
2t/2), taking nowG and DT as inde-

pendent parameters, is not able to discriminate between
relative contributions of the two functions. To determineDT
and G reliably we notice, however, that, unlike Eq.~3.23!,
terms depending onG and DT are decoupled in Eq.~3.14!
since one of them (G) is solely responsible for damping th
oscillations whereas the other one (DT) describes a mono
tonic decay ofF(ki ,t).

This renders possible the following approach. Based u
the scaling laws stated in Eqs.~4.5! and~4.7! and the slopes
of the linear least-squares fits~see Fig. 2!, we may calculate
x8, x9, andM0 for sufficiently low ki→0. For such a value
of ki , where the required large system sizes renders ME
simulations unfeasible, we then calculateM (ki ,t) through
Eq. ~3.23! (y950, see above!. Inserting thisM (ki ,t) into
the Volterra equation@see Eq.~3.15!# and using the algorithm
proposed by Berne and Harp@39#, we compute a ‘‘synthetic’’
F(ki ,t) ~i.e., onenot obtained from MEMD! which we ana-
lyze through a fit of Eq.~3.14!. Applying this procedure for
successively lowerki enables us to determine the range ov
which Eq.~3.14! applies, that is, whereDT , G, g, andv i are
independent ofki . In Fig. 3 we plot the ratioaF /aM , where
a5x8, x9, M0, or g. SubscriptF refers to a procedure
where we first fit Eq.~3.14! to ‘‘synthetic’’ data points to
determineDT , G, v i , andg and then use these quantities
calculatex8, x9, andM0 from Eqs.~3.17! and ~3.18!. If the
subscript ona is M we determinex8, x9, M0 from linear
least-squares fits to the scaling laws@see Eqs.~4.5! and~4.7!
and Fig. 2#; g is obtained from Eq.~4.9!. Since the plots in
Fig. 2 show thataM obeys the scaling laws in Eqs.~4.5! and
~4.7! over the entire range ofki plotted in Fig. 3, any devia-
tion of aF /aM from unity must be ascribed to a failure o
Eq. ~3.14! that is a dependence ofDT , G, v i , andg on ki .
Figure 3 shows that such dependences indeed exist foki
.0.1, say, but that the departure fromki-independent values

ta
5-9
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may be quite different depending on the quantity in questi
For example,x8 is nearly independent ofki over the entire
range plotted in Fig. 3 whereas a slightly larger and posit
deviation is observed forx9 with increasingki . A much
stronger positive and negative deviation is, on the ot
hand, found forg and M0, respectively. Aski→0, one ex-
pects Eq.~3.14! to become increasingly reliable. This notio
is corroborated by the plots in Fig. 3 showing that forki
&0.1, aF /aM.1. Values for the material constantsDT , G,
v i , andg obtained by fitting Eq.~3.14! to ‘‘synthetic’’ data
in the rangeki&0.1 are listed in Table II. Entries in that tab
show that indeed all four quantities are nearly independen
the particular value ofki according to one’s expectation.

C. Confined fluid

Attending now to a discussion of the confined fluid w
begin by plotting in Fig. 4~a! F(ki ,t) from MEMD @see Eqs.
~3.7! and ~3.8!# for sz51.9 and 4.1 for the same value o
ki50.3142 together with the corresponding bulk curve. T
plots reveal that under confinement the structure ofF(ki ,t)
is qualitatively the same as for the bulk. Thus, it is not s
prising that Eq.~3.14! provides an excellent representation
F(ki ,t) for confined fluids as well. However, one expec
from the plots in Fig. 4~a! members of the set$DT ,G,v i ,g%
to be affected by the degree of confinement~i.e., the magni-
tude ofsz , see below!.

FIG. 3. RatioaF /aM versuski for bulk fluid. (j) a5g, (d)
a5x9, (s) a5x8, and (h) a5M0, wherea is taken from scal-
ing laws @subscriptM, see Eqs.~4.5!, ~4.7!# and from ‘‘synthetic’’
F(ki ,t) ~subscriptF, see text!.

TABLE II. Material propertiesDT , G, v i , and g in the limit
ki→0. Data were obtained by fitting Eq.~3.14! to ‘‘synthetic’’
F(ki ,t) curves~see text!.

ki DT G v i g

0.02 1.427 2.537 4.451 2.256
0.03 1.427 2.537 4.451 2.257
0.04 1.427 2.537 4.451 2.257
0.05 1.427 2.537 4.450 2.258
0.06 1.427 2.537 4.450 2.259
0.07 1.427 2.537 4.450 2.260
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As for the bulk, one may adopt the numerical procedu
detailed in Sec. IV B and calculate the correspond
memory functionM (ki ,t) by solving Eq.~4.4! in an iterative
fashion @39#. Unlike the corresponding plots in Fig. 4~a!,
M (ki ,t) is somewhat less sensitive tosz . This is particularly
obvious if one compares the curves in Figs. 4 correspond
to sz51.9 and 4.1 with their bulk counterpart.

In order to determineDT(sz), G(sz), v i(sz), andg(sz),
we intend to apply the procedure described in Sec. IV B.
shown in that section the analysis rests upon the scaling l
for the parametersx8, x9, andM0 of the memory function
@see Eqs.~4.5! and ~4.7!#. Thus, it seems sensible to plot i
Fig. 5, x8 versuski for sz51.9 and 4.1 in comparison with
the corresponding bulk curve. As one can see from the
the scaling law@see Eq.~4.5a!# is obeyed by the confined
fluid as well. We have checked that this holds also forx9 @see
Eq. ~4.7!# andM0 @see Eq.~4.5b!#. Thus, we may adopt the
procedure applied to the bulk and determineDT(sz), G(sz),
v i(sz), andg(sz) through a fit of Eq.~3.14! to synthetic data
for F(ki ,t) for ki&0.1.

Results are plotted in Fig. 6 foraslit /abulk , where a
5DT , b ~see Sec. II B! or v i , that is, we normalize each
quantity to the bulk value listed in Table II. The plots sho
that DT , b, andv i oscillate with a period of about one mo

FIG. 4. ~a! Intermediate scattering functionF(ki ,t) as function
of time t for ki50.3142; (h) bulk fluid, (n) confined fluid,sz

54.1; and (s) confined fluid,sz51.9. ~b! is similar to~a!, but for
M (ki ,t).
5-10



e

d.
e
t

. 6
i

lk

ed
e
o
-

of
f

d
ated
of

ol-
the

is-

ore
city
ith

-

PROPAGATING HYDRODYNAMIC MODES IN CONFINED FLUIDS PHYSICAL REVIEW E66, 041205 ~2002!
lecular ‘‘diameter’’ as sz increases. The oscillations ar
damped so that$DT ,b,v i% assume their (sz-independent!
bulk values forsz*20 to within 3% as we have checke
Maxima and minima are detected at about the same valu
sz . The magnitude of the confinement effect decreases in
orderDT→b→v i .

The rather similar periodic structure of the plots in Fig
prompted us to attempt to correlate them with variations
the so-called solvation pressure2tzz2Pb (tzz is the com-
ponent of the stress tensor andPb is the bulk pressure! of a
confined fluid in thermodynamic equilibrium with the bu
which may be calculated as a function ofsz in GCEMC
simulations for fixed T and m @see Eqs.~93!–~96! in
Ref. @29##. In the infinite-system limit, that is forsz→`,tzz
→2Pb according to the definition oftzz @29#. As shown in
Fig. 7, 2tzz2Pb oscillates around the ordinate as expect

A correlation between2tzz and structural changes in th
confined fluid is established most directly by comparis
with the local densityr(z). From such an analysis it is ap

FIG. 5. Scaling law forx8 as function ofki
2 ; (s) confined fluid,

sz51.9, (n) confined fluid,sz54.1, and (d) bulk.

FIG. 6. Ratioaslit /abulk versussz for thermal diffusivity DT

(s), lateral kinematic viscosityb (d), and adiabatic, in-plane ve
locity of soundv i (h).
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parent that for ‘‘simple’’ fluids the oscillatory dependence
tzz on sz reflects stratification~i.e., the arrangement o
~spherical! fluid molecules in individual layers parallel with
the confining substrates, see Sec. IV A 2 of Ref.@29# and
additional references therein!. Oscillations in2tzz are there-
fore fingerprints of the formation of a full new layer of flui
molecules. Consequently these maxima are separ
roughly by one molecular diameter similar to the extrema
DT , b, andv i ~see Fig. 6!. At minima of 2tzz, the fluid is
under minimum compressional stress and hence fluid m
ecules are most conveniently accommodated between
substrates~i.e., the fluid is more ordered!. At maxima of
2tzz, on the other hand, the layered fluid structure is d
rupted maximally~i.e., the fluid is most disordered!. Com-
paring the plots in Figs. 6 and 7 one realizes that in the m
ordered states sound waves propagate with a higher velo
but appear to be damped more strongly in comparison w
more disordered states. Finally, we present plots ofS(ki ,v)
in Fig. 8, which we calculate from

FIG. 7. Solvation pressure2tzz2Pb as function of substrate
separationsz . Data were obtained in GCEMC forT51.0, m5
29.11. Solid line is fit to data point intended to guide the eye.

FIG. 8. Dynamic structure factorS(ki ,v) as a function ofv
and for various substrate separationssz and ki50.20. Results are
obtained using interpolated data forDT , b, v i , andg from Fig. 6 in
Eq. ~4.11!.
5-11
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S~ki ,v!5ReF~ki ,v!

5
g

g21

DTki
2

v21~DTki
2!2

1
1

2g F Gki
2

~v2v iki!
21~Gki

2!2

2
d~ki!~v2v iki!

~v2v iki!
21~Gki

2!2G
1

1

2g F Gki
2

~v1v iki!
21~Gki

2!2

1
d~ki!~v1v iki!

~v1v iki!
21~Gki

2!2G , ~4.11!

which follows from Eq. ~3.13! by replacings by iv. To
obtain Fig. 8 we choseki50.20 so that the results perta
roughly to the light scattering in the vacuum ultraviolet r
gime. For such a small value ofki one expectsd(ki)'0 and
Eq. ~4.11! reduces to a sum of three Lorentzians, one c
tered atv50 ~Rayleigh line! and the other two atv56v i
~Brillouin lines!. As a consequence of the oscillatory depe
dence ofDT on sz , the height of the Rayleigh peak oscillate
with a period of abouts assz increases. On account of th
oscillatory dependence ofv i on sz a periodic shift of the two
Brillouin peaks along thev axis is also observed in Fig. 8
Following McIntyre and Sengers, the first term on the
right side of Eq.~4.11! can be identified with the~nonpropa-
gating! decay of entropy fluctuations such that forv50 the
height of the Rayleigh peak is a measure of the entropy
the fluid ~divided by DTki

2) @35#. In view of this, it is not
surprising thatS(ki,0;sz) oscillates withsz ~see Fig. 8! such
that the maxima correspond to the states of maximum di
der of the confined fluid identified through a parallel analy
of the solvation pressure~see above!. The Brillouin peaks, on
the other hand, describe propagating transverse-pres
modes at constant entropy@35#.

V. SUMMARY AND CONCLUSIONS

In this work we are concerned with the propagation
density modes in a fluid confined to nanoscopic spaces
unstructured~i.e., laterally smooth! solid substrates. Our fo
cus is on the hydrodynamic regime for which we deve
relevant conservation laws in Sec. II A. The key in derivi
these expressions is coarse graining the fluid’s structural
temporal properties. This is achieved by introducing a v
ume elementV that is both small on a macroscopic but lar
on a molecular scale. Hydrodynamics is then concerned w
fluxes in and out ofV through its surface. AssumingV to be
of arbitrary shape and extent in thex-y plane but to cover the
entire space between the substrate surfaces in thez direction,
we derive conservation laws forz-averaged lateral fluxe
~i.e., fluxes in directions parallel with the substrate surfac!.
This approach seems sensible since the fluid ison average
homogeneous and isotropic in thex-y plane on account o
the fluid substrate potential that is solely a function of t
distance in thez direction between a fluid molecule and bo
04120
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substrates@see Eq.~4.1!#. Because of this lateral homogen
ity and isotropy, we assume constitutive equations for m
mentum and energy fluxes identical with those commo
employed for bulk fluids. With these constitutive equatio
we derive a set of coupled linear equations that can be so
for propagating density modes in the hydrodynamic regim
Using this last expression together with the microscopic d
nition of the intermediate scattering function eventually lea
to an expression forF(ki ,t) in the hydrodynamic regime.

However, to obtainF(ki ,t) from the more directly acces
sible F(ki ,s), the latter needs to be Laplace inverted. Th
inversion is onlyapproximatelypossible because of the com
plexity of the hydrodynamicF(ki ,s) @see Eq.~3.10!#. As a
result theform of F(ki ,t) is correct only to orderO(ki

2).
However, if the hydrodynamicF(ki ,t) is fitted to MEMD
data for the accessible range ofki , the fit parameters~i.e.,
the set$DT ,G,v i ,g%) turn out to depend onki . This reflects
a deficiency of the hydrodynamicF(ki ,t) caused by the
crudeness of the assumptions@see Eqs.~3.11! and ~3.12!#
invoked to derive Eq.~3.14! from Eq. ~3.10!.

We therefore propose a different approach in this work
which propagating hydrodynamic modes can be analy
and interpreted more reliably. Rather than employing direc
F(ki ,t), its memory functionM (ki ,t) turns out to be more
useful. The two are related through the Volterra integ
differential equation. In the hydrodynamic regime this equ
tion can be solvedexactly for M (ki ,s) using the hydrody-
namic form ofF(ki ,s) @see Eq.~3.10!#. The advantage of
M (ki ,t) overF(ki ,t) is that its limiting hydrodynamic form
is not based upon any additional assumptions than those
essary to derive Eqs.~2.22!–~2.24!. Because of its relative
simplicity, M (ki ,s) can be transformed back to the time d
main analytically and expressed in terms ofx8, x9, M0, and
g @see Eqs.~3.17!, ~3.18!, ~3.21!, and~3.23!#.

Members of the set$x8,x9,M0 ,g% obey simple analytic
scaling laws@see Eqs.~4.5! and~4.7!# that may be employed
to calculateF(ki ,t) from M (ki ,t) by solving numerically
Eq. ~3.15! for ki&0.1 where a direct calculation from
MEMD is unfeasible on account of the large system siz
that would be required. However, by fitting the hydrod
namic expression forF(ki ,t) @see Eq.~3.14!# to these syn-
thetic data, ki-independent results for$DT ,G,v i ,g% are
eventually obtained. The regime ofki , where the form of
F(ki ,t) becomes approximately correct, is about a factor
2 smaller thanassumedpreviously in the work of Schoen
et al. for homogeneous bulk fluids@27#. The interpolation of
$DT ,G,v i ,g% towardski50 ~i.e., the infinite-system limit!
carried out by these authors must be regarded as unsafe
the apparent agreement with experimental results is fo
itous in the light of the present study.

The analysis of bothM (ki ,t) andF(ki ,t) can be carried
out for confined fluids as well. Results for the set$DT ,b,v i%
reveal a confinement effect manifested as an oscillatory
pendence of all three members of the set on the subs
separationsz ~see Fig. 6!. Correlating the oscillations in
$DT ,b,v i% with similar oscillations in the solvation pressur
which are well understood for ‘‘simple’’ fluids, permits us t
conclude that for values ofsz where an integer number o
5-12
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fluid layers fits best between the solid substrates~i.e., states
of a high degree of order! are characterized by maxima o
$DT ,b,v i%, whereas in situations where the formation of
new layer is in progress, the three quantities become m
mum.

In the near future we intend to employ the approach
veloped here to investigate the dynamics of confined flu
near first-order phase transitions. If, for example, the therm
dynamic state of the fluid approaches its limit of stabil
~i.e., a spinodal! from either the liquid or gas one-phase r
gion, one expects the isothermal compressibilityk i to be-
come large~see Sec. III C!. Because of Eq.~2.25a!, this im-
plies v i→0. It might therefore be conceivable that for
given thermodynamic state in the vicinity of a phase tran
tion, x9→0 in Eq. ~3.17!. Hence, cosh(ix9t) and sinh(ix9t) in
Eq. ~3.20! may be replaced by 1 and 0, respectively. O
therefore expects a significant change ofM (ki ,t) from a
damped oscillatory function oft to a simple exponential, tha
is,

M ~ki ,t !5M0~ki!exp~2x8t !. ~5.1!

If, on the other hand,v i becomes sufficiently small, the in
equality in Eq.~3.22! may have to be replaced by

M0~ki!,
~DTki

2g2x8!2

g21
, ~5.2!
n

.

s

J

,

gu

o

ur
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so that x9 becomes complex and henceM (ki ,t)
5ReM (ki ,t)1Im M (ki ,t) @see Eq.~3.20!#, where the real
part

ReM ~ki ,t !5
M0~ki!

2
$exp@2~x81x9!t#

1exp@2~x82x9!t#%. ~5.3!

However, one has to keep in mind that the present theor
based upon linearized hydrodynamic equations like E
~2.16! and ~2.19!. Since fluctuations become large as o
approaches the limit of stability of a fluid, the validity of th
present approach in the context of phase equilibria rem
to be tested. This test is possible on the basis of para
GCEMC simulations where the location of first-order pha
transitions can be located precisely through a calculation
the grand potential@40#.
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